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Consider a point x = [(B, )] € Ag in the moduli space of
polarized abelian varieties (over some base field). The Hecke orbit
of x, denoted by H(x), is the set of moduli points y = [(C,v)]
such that over some field 2 there exists a quasi-isogeny

(B,m)a ~ (C,v)a.
Problem. Describe the closure H(x)%er.

We see a set of points, arithmetically defined in A, and we ask for
geometric properties of the Zariski closure. Where have we seen
such a pattern before?

In 1989 Yves André formulated a stimulating conjecture. Soon his
intuition and idea were generalized and after 30 years AO has been
proved.

Thank you Yves for your challenging problems and ideas.

It is a great pleasure that this ++-conference can be held.

| wish you many happy returns Yves.



We report on joint work with Ching-Li Chai



(1) The Hecke orbit conjecture.

For x = [(B, )] € Az we write

H(x) = {[(Br, )] [3@Q: (B, p) @ Q2 ~ (Br, 1) © Q}.

(1.1) The HO problem is solved in characteristic zero:
H(x) is dense in Ag(C).

Use complex uniformization and (even classical) density of

Sp2g(@) in Sp2g(R)'

Notation. Fix g and choose an integer n > 3 prime to p. Write
d = (di, - ,dn) for a set of elementary divisors (d; divides dj11),
and define

Ag =Ug Ag d.n @ Fp.



(1.2) An example in positive characteristic. Let E be a
supersingular elliptic curve over a field K O IFp,. Its Hecke orbits is
finite in every irreducible component of A; @ Fp,.

In this case H(x) is not dense in any of the irreducible components
of A1 ® Fp. In contrast:

Let E' be an ordinary elliptic curve over a field K O F,. Its Hecke
orbits is dense in every irreducible component of A1 ® IFp.

More generally, or any x = [(B, p)] € Ag ® Fp, where £ = N(B) is
the Newton Polygon of B, its Hecke Orbit is contained in the NP
stratum We(Ag ® IFp). (Notation explained below.)

Hence: for x € We(Ag d,n) & Ag.d,n the Hecke orbit #(x) is not
dense in Ag 4 n.



Can we describe H(x)%?
In 1995 we see one answer and one conjecture:

(1.3) Theorem HO—p (Ching-Li Chai, 1995).
For A ordinary H(x) is dense in Ay @ .

(1.4) (HO) Conjecture (FO, 1995)=Theorem (Chai+FO).

For x = [(B, 11)] the set H(x) is dense in We(Ag @ Fp),

the NP stratum with Newton Polygon & = N/ (B).



Some notation. We write k for an algebraically closed field. We
write A for an abelian variety, and X for a p-divisible group.

We write H(P), Hecke orbits involving isogenies of degree prime to
p, and we write Hy with isogenies of degree a power of ¢, where

£ = p is a prime number.

We write (HO), for the conjecture that for any x € W¢(.Ag) with
& # o, where o is the supersingular Newton Polygon, then the
orbit Hy(x) C C(x) C Ag is dense in the central leaf C(x).
(Notation explained below.)

The set #H(x) is called the Hecke orbit of x; we say “the action of
H on x", when considering the Sp,,(Af)-action.

We will see that the proof of (HO) discussed below reproves the
result (1.3) HO-p by Chai, 1995.



(2) Survey of our proof of the Hecke Orbit conjecture.

In 1966 Grothendieck wrote to Mumford: “/ found it kind of
astonishing that you should be obliged to dive so deep and so far
in order to prove a theorem whose statement looks so
simple-minded.” This seems to apply also to our proof of (HO).



Survey of our proof.

» Obvious reductions of the problem. At first we observe
some obvious reductions of the problem. As a corollary of the
“almost product structure”:

(HO), =(HO)
and we can work over a finite field:
(HO), for Ag 1, ® F, = (HO),.
We split the proof of (HO); on Ag 1,, ® F, into two quite
different aspects:

» The discrete part. We discuss a proof of (HO) ;...
for x € We = We(Ag1,n) with § # o then We and C(x) are
geometrically irreducible.

» The continuous part. We briefly sketch a proof of (HO)
for x € We(Ag,a.n)(Fp) with € # o then H,(x) C C(x) is
dense with C(x) C We(Ag.d,n)-

Conclusion:

cont”

(HO) + (Ho)cont = (HO)

discr



(3) Strata and leaves in A,.
From now on write A, = Ug Ag g0 @ Fp.
(Later we consider Ag = Az 1, ®Fp.)

Many methods useful in characteristic zero are not available in
positive characteristic.

However in positive characteristic quit different concepts can be
used.

The HO problem urged us to find the “underlying structure”.
We discuss the following ingredients:

» Newton Polygon strata (Manin, Grothendieck, Katz),
» abelian varieties over finite fields (Tate),
» Ekedahl-Oort strata, central leaves, isogeny leaves,

» minimal abelian varieties, hypersymmetric abelian varieties
and p-adic monodromy.



Basic, general approach:
find strata and leaves, intrinsically defined in Ag @ Fp,
their interplay, and give proofs by
degeneration to the "boundary”.

Another basic ingredient: hypersymmetric abelian varieties, to be
defined and discussed below.



We consider the proof (1995) by Chai of density of a Heck orbit in
the ordinary locus:

consider the closure T of H(x) in a toroidal compactification of
Ag,

use "the cusp at infinity” oo € T, and

a delicate and careful study of Hecke-/-stable subspaces of T/
proved

density of any Hecke orbit in the ordinary locus.

For prank(A) = 0 we cannot degenerate to the boundary of Ag,
but, for every Newton Polygon & we can ‘degenerate’ to a smaller
NP-stratum.

That will be our basic strategy.

We consider p-divisible groups. We write X! for the Serre dual of
X. Invariants of an abelian variety A will be given with the help
X = A[p~].



Survey of strata and leaves.

Newton Polygon strata. For a symmetric Newton Polgon define
We(Ag) = {[B, p] [N(B) =&} C Aqg.
EO-strata. For ¢ := (A[p], <>) define S, C Ag 1., Fp,
So ={[B,ul | ¢ = (Blp], <>) @ Q}

Central leaves. For x = [(A, \)] € Ag 4,» and define the central
leaf containing x:

C(x) ={l(B;p)] € Agan | (B, 1)[p*] @ Q2 = (A, A)p™] ® Q}.

Three p-adic invariants for polarized abelian varieties and the
resulting stratification or foliation on Az ® IF,, are listed in the
following table.

the isogeny class of X & NP We
the isomorphism class of (X[p], A[p]) | ¢ EO | S,
the isomorphism class of (X, \) [(X, )] | CFol | C(x)




(3.1) Newton Polygons, NP-strata. Manin and Dieudonné
showed that an isogeny classes of p-divisible group X over

k =k D Fp, is classified by its Newton Polygon N(X).

Define a partial ordering on the set of Newton polygons. For
Newton polygons (1, (2

G 2 ¢ <= ht(G1) = ht(¢2), dim(¢1) = dim((2)
and no point of (y is strictly below (5.

We will say that “(7 is on or above (5" when (3 < (5.

lllustration: (1 2 &

¢
; G2




» For X = A[p°] the Newton Polygon £ = N (X) =: N(A) is
symmetric (i.e. a slope s and 1 — s appear with the same
multiplicity). This follows from the duality theorem, which
implies Af[p™] = A[p™]".

» Newton Polygons “go up” under specialization (proved by
Grothendieck).

» (Grothendieck-Katz) The locus
We(Ag) :={[B,u] | N(B) = £} C Ag

is locally closed.



» Open problem. Give a “functorial definition” of NP strata.
» The Hecke Orbit problem is solved for the supersingular
stratum.

» The ordinary locus is dense in every irreducible component of
Ag (Mumford, Norman-FO, 1980).

» For many Newton Polygons the locus We(Ag) can have
ireducible components of different dimensions; upper and
lower bounds are precisely known.

Notation. We write Wz = We(Ag,1,n @ Fp) in the principally
polarized case.



(3.2) EO-strata. Here we only work in Az 1, @ Fy. A principally
polarized abelian variety defines ¢ := (A[p], <>), a finite group
scheme with a pairing, called a " polarized BT;". By a theorem of
Kraft we know the number of such isomorphism classes for given g
is finite. Torsten Ekedahl and FO defined and studied

Sp ={[B,;ul | ¢ = (Blp], <>) ©Q} C Ag1n ®Fp

where € is some algebraically closed field.

EO strata are quasi-affine; hence this method gives access to
specializing to smaller strata, and in this way irreducibility of
Ag 1,0 ® k (Faltings and Chai) has been reproved.



(3.3) Central leaves, isogeny leaves and the almost product
structure. Consider x = [(A, )] € Az 4., and define the central
leaf containing x:

C(x) = (B, W] € Agan | (B 1)[p™] © Q2= (A, N)[p™] @ 0},

C(X) C .Ag’d,,,.

Some properties:
» For £ = N(A) the central leaf is a closed subscheme
C(x) C We(Ag.d.n).
» We see a “pointwise definition”, however we have a functorial
definition using a new notion “sustained p-divisible groups”.

» C(x) is smooth over the base field.



» Some examples.
For x ordinary or almost ordinary C(x) = We(Ag.,d,n)-
For x supersingular C(x) is finite and H(P)(x) is finite in every
irreducible component of Ag.

» Central leaves are defined for any degree of the polarization.

» Note that prime-to-p Hecke actions “move points” inside a
central leaf.

Consider Hecke actions using only isogenies with kernel a multiple
extension of copies of ap, thus defining H,. In general H(x) can
have infinitely many irreducible components inside an irreducible
component of A;. However for any x there are only finitely many
irreducible components containing x; the union of these we denote
by I(x), called an isogeny leaf. Over a perfect base field we
consider the reduced scheme structure on /(x).

Note that every isogeny leaf in the ordinary stratum and in the
almost ordinary stratum consist of one point.



(3.4) Theorem (The almost product structure, 2004). Let £ be
a symmetric NP and let W be an irreducible component of
We(Ag @ k). There exist algebraic reduced schemes C and | over
k, with | irreducible, and a surjective, finite morphism over k

:Cxl—-»>W

such that

for any ¢ € C the image ®({x} x I) C W is an isogeny leaf, and
for any z € |, the image ®(C x {z}) C W is a central leaf.
Comment. This is still correct inside A, 4 , with moreover C
irreducible.

Comment, warning. In general a central leaf and an isogeny leaf
are not transversal at intersection points.



Corollary.
(HO)@ = (HO).

Explanation. We see H,, gives density in isogeny leaves, H,
“moves” in a central leaf; hence

density H(x) C C(x) and the almost product structure
prove density H(x) C We(Ag).



Survey of strata and leaves.

Newton Polygon strata. For a symmetric Newton Polgon define
We(Ag) = {[B, p] [N(B) =&} C Aqg.
EO-strata. For ¢ := (A[p], <>) define S, C Ag 1., Fp,
So ={[B,ul | ¢ = (Blp], <>) @ Q}

Central leaves. For x = [(A, \)] € Ag 4,» and define the central
leaf containing x:

C(x) ={l(B;p)] € Agan | (B, 1)[p*] @ Q2 = (A, A)p™] ® Q}.

Three p-adic invariants for polarized abelian varieties and the
resulting stratification or foliation on Az ® IF,, are listed in the
following table.

the isogeny class of X & NP We
the isomorphism class of (X[p], A[p]) | ¢ EO | S,
the isomorphism class of (X, \) [(X, )] | CFol | C(x)




(4) Two basic tools.

(4.1) Prime-to-p monodromy.

For an algebraic scheme S over a field K we write INy(X) for the
set of irreducible components of S ®k k for some algebraically
closed field k D K.

Theorem (Chai, 2005). Suppose an algebraic subscheme

W C Ag d,n ® k has no irreducible component contained in the
supersingular locus W,(Ag g.n ® k). Suppose W is H(P)_stable
and suppose H(P) acts transitively on Mo(S). Then W is
geometrically irreducible.



(4.2) Hypersymmetric abelian varieties.
Definition (Chai-FO, 2006). An abelian variety A over
K Ck:= IFTJ is said to be hypersymmetric if

End(Ax) ® Z, —~ End(A[p™])

is an isomorphism.
Warning. Tate showed (1966) that for an abelian variety B over a
finite field K = Fq

End(B) ® Z, — End(B[p™]).

However, we will see there are many examples of an abelian variety
B/Fq4 not hypersymmetric.



Some examples and properties.

(i) Elliptic curves are hypersymmetric.

(ii) For positive coprime integers m > 0, n > 0 there exists a
hypersymmetric A with N/(A) = (m, n) + (n, m). Products of
hypersymmetric abelian varieties are hypersymmetric.

Conclusion. For every symmetric £ there exists a hypersymmetric
A with N(A) =¢.

(iii) Examples. An absolutely simple abelian surface (g = 2) of
p-rank equal to f = 1 is not hypersymmetric. An absolutely simple
ordinary abelian variety of dimension g > 2 is not hypersymmetric.
(iv) An absolutely simple abelian variety A is hypersymmetric is
either a supersingular elliptic curve, or the following properties
hold:

(iv-a) all slopes of £ := N(A) have the same multiplicity, and
(iv-b) the greatest common divisor of the multiplicities of the
simple parts of £ is equal to 1.



(4.3) Generalized Serre-Tate coordinates.

For Ap ordinary and xo = [(Ao, 1£)] in characteristic p and in mixed
characteristics on A, ® Z, we have Serre-Tate coordinates on
(Ag ® Z,)">, canonical up to Z,-substitutions.

Can these be generalized to other NP-strata?

For xo not ordinary there is a generalization to C(x)/¥ for every

y € C(x) to Ay @ IFp; however these cannot be extended to mixed
characteristic.

For xp also non-almost-ordinary, these cannot be extended to the
NP-stratum.

These generalized Serre-Tate structures on (completions of)
central leaves will be of help in understanding the HO problem.



(5) A proof of (HO)

discr”

Motivation, and a question.

We know the number of supersingular j-values, i.e. the number of
geometric components of the supersingular locus for g = 1:
Deuring (1941), Eichler (1955) and Igusa (1958) give an
interpretation of this as a class number.

For g = 2 the number of components of the supersingular locus
was determined as a class number (Ibukiyama-Katsura-FO, 1986),
and for arbitrary g this was done by K.-Z.Li- FO, 1998.

We see: inside Ag 1 p

‘the supersingular NP-stratum has many irreducible components‘

(for p large). We should like to know (ir)reducibility of any
NP-stratum for any g. It came as a surprise:



(5.1) Theorem (Chai-FO, 2011). For any g and any £ # o the
NP-stratum We = We(Ag 1,n) is geometrically irreducible.

For any x € Wg = We(Ag.1,n) the central leaf C(x) is
geometrically irreducible.

Notation. Here we discuss a proof in case Ay = Ag 1, ® Fp.
However this theorem can be generalized to A 4 p.

(5-2) Only supersingular Hecke orbits are finite. Inside any
irreducible component of A,

H(x) is finite & x € W,(Ag) & He(x) is finite.
Using EO-strata we prove:

For any x € Ag, we have H,(x)% N W, # 0.



(5.3) Moduli of supersingular abelian varieties.

A long string of research (started by H. Hasse in 1936 with earlier
roots by Gauss and Emil Artin) was completed by Ke-Zheng Li -
FO in 1998 describing W, C Az 1, and more generally W, (Ag).
Here is one particular aspect we need here:

The action of H; on Mo(W,) is transitive.

(5.4) Purity. Theorem (Aise Johan de Jong - FO, 2000). Let
X — S be a p-divisible group over an irreducible scheme S in
characteristic p. Any jump of the Newton Polygon already takes
place in codimension one.

Comment. By Grothendieck-Katz we know jumps take place on a
closed subscheme of S given by “many equations”; the proof that
jumps already appear in codimension one is non-trivial.



(5.5) A conjecture by Grothendieck, 1970.

Grothendieck showed that “Newton Polygons go up under
specialization” and Grothendieck, in his Montreal lecture 1970,
posed a precise question about the converse. That can also be
formulated for polarized p-divisible groups; that analogon does not
hold for a an arbitrary degree of polarization. However for principal
polarizations this analog of the Grothendieck conjecture does hold:

Theorem.
W™ = Ug<e Wer C Agin.

(5.6) For a group scheme G over a field K O [, and a perfect
field L D K we define

a(G) := dim; (Hom(ayp, G)).



(5.7) Theorem. For a principally polarized (Ao, \) there exists a
deformation (over an irreducible base scheme S) to (A, \) with

a(A) <1 and N(Ao) = N(A).

Comment. A proof of (5.5) and (5.7) uses a complicated
combinatorial argument; it seems desirable to give a more
conceptual proof.

Corollary. For every symmetric & and every irreducible component
W C We C Ag 1,0 with generic point n € W we have a(A,) < 1.
Another way of phrasing: W(a < 1) C W is dense.

This uses the methods developed in (5.4) Purity.



(5.8) Cayley-Hamilton. In general it is not easy to determine NP
strata in a deformation space Def(Ap, A). A non-commutative
version of the Cayley-Hamilton theorem applied to a matrix
displaying the Frobenius morphism leads in a particular case to a
precise description: in the principally polarized case and with
a(Ap) = 1 we know the structure of NP strata in Def(Ag, \) very
well.

Theorem. Suppose a(Ag) =1, and A is a principal polarization;
write N (Ao) = £ = 0. In Def(Ag, \) every Newton Polygon &' = &
does appear, these NP strata are irreducible, formally smooth, they
are transversal complete intersections, and they are nested (under
Zariski closure) precisely as given by the partial ordering on
Newton Polygons.



Corollary. For & <X ¢ and for any irreducible
W C W, C Ag1,n ® k there is precisely one irreducible component
W' C Wer C Ag1.n @ k such that W C (W')%er,

Corollary. For & < ¢ inclusion in the Zariski closure gives a well
defined, surjective, Hecke-£-equivariant map

M(We) — N(We ).

Note that Hecke-/ acts transitively on the set (W) of
geometrically irreducible components of the supersingular stratum
inside Ag 1. Hence

Corollary. Hecke-{ acts transitively on (W) for every symmetric
Newton Polygon &.



Using prime-to-p monodromy, Chai 2005, this implies:

(5.8) Theorem For every £ # o the Newton Polygon stratum
We = We(Ag,1,n) is absolutely irreducible.

. eorem for o Irreducipility o implies irreducibility
5.9) Th For & # o irreducibility of W implies irreducibili
of C(x) C We.

Here is a way of deducing (5.9) from (5.8). Choose a principally
polarized (A, \) with A hypersymmetric. Using irreducibility of

We C Ag 1,5 it follows from the almost product structure that for
for every irreducible component C; C C(x) ® k there exists

(Ai, Ai) € (GiNHa(x)). A careful study of endomorphism algebras
and weak approximation shows:



Lemma. For x = [(A,\)] and [(A", N)] = X' € Ha(x) NC(x) and
A hypersymmetric, we also have x' € H(x).

Hence #; operates transitively on IMo(C(x)). Hence for
non-supsingular N'(A) we conclude C(x) is geometrically
irreducible. QED (HO) 4s.r

We used
8(W§) = Wgzar\Wg = U&’; Wg/

in the proof above. Can we follow an analogous path for central
leaves? However we do not have enough information about
d(C(x)) and of deformation theory inside d(C(x)/? (a hard
unsolved problem) in order to prove irreducibility of central leaves
directly along such a line.



P.S. April 2022.

Marco d'Addezio and Pol Van Hoften are working on the
prime-to-p HO-conjecture for for Shimura varieties of Hodge type
and they hope this can be proved under a mild additional
assumption on the size of the prime p.

Our theorem (HO) ;... has been generalized by Arno Kret and Sug
Woo Shin (2021) to Hodge-type Shimura varieties with
hyperspecial level at p

while an example of Yasuhiro Oki (2021) suggests that the
analogue of this theorem in the non-hyperspecial case might not
hold: “we construct infinitely many Shimura varieties for CM
unitary groups in odd variables for which the prime-to-p Hecke
action is not transitive”.



| wish all of you a pleasant conference,

and wish Yves many more and healthy years in our beautiful
mathematics.

Thank you for your attention.



7 Some open problems.

(7.1) Give a scheme-theoretic definition of NP strata.

Note that all components of A, ® IF,, are generically smooth; does
the analogous result hold for other NP-strata?

Remark: there is a satisfactory scheme-theoretic definition for
central leaves by the notion of “sustained p-divisible groups”;
There is a satisfactory scheme-theoretic definition for EO strata, by
Ekedahl - Van der Geer.

(7.2) For any £ and any x € W; describe

I(C(x)) = (CH))% —C(x).

Remark: for “central streams” this has been done because these
are EO strata. Do other central leaves give the same answer?

(7.3) Is there a conjecture in positive characteristic parallel to the
AO conjecture in characteristic zero, i.e. characterizing
“Tate-linear” subvarieties of Az ® I, ?

(7.4) What can be said about density of Hecke orbits in other
moduli spaces, and in other Shimura varieties?



(6) A proof of (HO)__ .
Reminder. We have proved (HO) ;...:

every non-supersingular C(x) is irreducible.
Next (HO)__ .: density of Hy(x) C C(x).

cont-

In order to find a proof of (HO)_, . we can try the following.

The proof (1995) by Chai of density of a Heck orbit in the ordinary
locus:

consider the closure T of #H,(x) in a toroidal compactification of
Ag,

use "the cusp at infinity” co € T, and

perform a delicate and careful study of Hecke-/-stable subspaces of
T/,



However, for any x = [(A, A)] of p-rank zero, f(A) =0, with

& = N(A) we know W (Ag)%T C Ag; the closure of Hy(x) C W
does not contain moduli points of semi-abelian varieties, and
degeneration to the boundary of A, cannot be used.

But we can use another " degeneration”:

(6.1) For any x € Ag1,n

T = Ho(x)% N W, # 0.

Method: Choose y € T N W, and study Hecke-¢-stable subspaces
of TV N W.

Failure. Despite many efforts Chai and | were unable to prove the
desired Hecke-density along these lines.



We give a very short sketch of a proof of (HO)_, .. In this part of
the talk we give an outline, but we do not give any detailed proofs.

(6.2) Interlude, an example (due to Michael Larsen, 1995).

Let E be an ordinary elliptic curve over IFT,, with principal
polarization \1 and consider (B, \) = (E, \1)®¢. Any H,-stable
closed subspace T C Ag 1., containing x = [(B, \)] is dense in
Ag 1.n. Note that this (B, \) is hypersymmetric.

A proof involves:

the use of Serre-Tate coordinates on the ordinary locus, and

a careful study of the “group action” of GSp,.(Qy) on T.
Conclusion. Any H,(x) C A such that H,(x)%*" contains the
hypersymmetric x = [(B, A)] is dense in Ag 1 5.



In order to find a proof of (HO)_ . we try find a hypersymmetric
point in H,(x)?*. Note that if A is not hypersymmetric, then (of
course) H([(A, 1)]) does not contain a hypersymmetric point.
However, it may happen that H([(A, 1)])%* does contain a
hypersymmetric point.

Ching-Li Chai found a wonderful method, the Hilbert trick, that
finally gave us access to this problem. We only give a rough sketch
of these arguments here.

By a result of Tate (1966) we know that any abelian variety A/F,
of dimension g has “enough real multiplications”, i.e. there is a
Hilbert Modular variety M, associated with a totally real

Ey x -+ x Ep = E/Q of rank g, consider its image in A,, such
that [(A, 1)] € M C Ag. On a HM variety the study of strata and
leaves is easier. With a lot of effort, and joint work with Chia-Fu
Yu we were able to show:



(6.3) (IV) Theorem (Yu-Chai-FO, 2003-2006-2020). The Hecke
orbit conjecture holds for Hilbert Modular varieties.

The main difficulty turned out to find a way to find a delicate
generalization of EO-strata in HM varieties in the case of
ramification in the totally real algebra E/Q.

(6.4) Corollary. For any x = [(A, p)], with £ = N(A) # o and for
any Hg-invariant closed subspace T C C(x) there exists a
hypersymmetric point y € T.



Using this a proof of (HO)_, follows:

cont

(6.5) Corollary. For any ¢ # o we have H(x)** = C(x).

(6.6). Conclusion. Theorem (HO). For any x = [(A, it)], with
& 1= N(A), the Hecke Orbit H(x) is dense in We(Ag @ Fp).



Postscript. Under Construction.

It might be that a more direct proof of (HO) is possible:

study the structure of formal completions at closed points of a
central leaf,

rigidity for Tate-linear formal varieties and

a p-adic monodromy argument.

At the moment no claim is possible that this will work, but there
seems hope for a proof along these lines.
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and they hope this can be proved under a mild additional
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while an example of Yasuhiro Oki (2021) suggests that the
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Note that all components of A, ® IF,, are generically smooth; does
the analogous result hold for other NP-strata?

Remark: there is a satisfactory scheme-theoretic definition for
central leaves by the notion of “sustained p-divisible groups”;
There is a satisfactory scheme-theoretic definition for EO strata, by
Ekedahl - Van der Geer.

(7.2) For any £ and any x € W; describe
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