Periods, Motives and Differential Equations: between Arithmetic and Geometry

on the occasion of Yves André's 60th birthday

Institut Henri Poincaré, Paris

April 11, 2022

New perspectives on de Rham cohomology, after Bhatt-Lurie, Drinfeld, et al.

Luc Illusie

Université Paris-Saclay

Plan

- 0. Introduction, statement of main theorem
- 1. Strategy
- 2. Prismatic and Hodge-Tate cohomology complexes
- 3. A strange attractor: the Cartier-Witt stack
- 4. The Hodge-Tate divisor
- 5. Sen operators, Hodge diffraction
- An alternate approach: endomorphisms of the de Rham functor (after Li-Mondal, Mondal)
- 7. Questions

0. Introduction

k perfect field of char. p > 0; X/k smooth

$$X \longleftarrow X' \longleftarrow X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec}(k) \stackrel{\varphi := F_k}{\longleftarrow} \operatorname{Spec}(k)$$

Cartier isomorphism

$$C^{-1}: \Omega^{i}_{X'/k} \stackrel{\sim}{\to} H^{i}(F_{*}\Omega^{\bullet}_{X/k})$$

By [DI] a smooth lifting $\widetilde{X}/W_2(k)$ of X gives a decomposition in $D(X',\mathcal{O}_{X'})$

$$(0.1) \qquad \qquad \oplus_{0 \leqslant i < p} \Omega^{i}_{X'/k}[-i] \stackrel{\sim}{\to} \tau^{< p} F_* \Omega^{\bullet}_{X/k}$$

inducing C^{-1} on H^i .

Recall the main steps of the proof:

- (1) $(\tau^{\geqslant -1}L\Omega^1_{X'/W(k)})[-1] \xrightarrow{\sim} \tau^{\leqslant 1}F_*\Omega^{\bullet}_{X/k}$ in $D(X', \mathcal{O}_{Y'})$ (use local liftings of Frobenius)
- (2) $\widetilde{X}/W_2(k)$ lifting X gives splitting of $L\Omega^1_{X/W_2(k)}$ (elementary cotangent complex theory)
- (3) from $\tau^{\leq 1}$ to $\tau^{\leq p}$: multiplicativity

Goal today: give an idea of the proof of the following theorem of Bhatt-Lurie (refining an unpublished, independent one of Drinfeld):

Theorem 1 [BL1, 5.16]. Let X/k be smooth. A smooth lifting \widetilde{X} of X to $W_2(k)$ determines a commutative algebra object¹

$$\Omega_{X/k}^{\not D} \in D(X,\mathcal{O}_X),$$

depending functorially on \widetilde{X} , which is a perfect complex, equipped with an endomorphism Θ and an isomorphism in $D(X', \mathcal{O}_{X'})$

(0.2)
$$\varepsilon: \varphi^* \Omega_{X/k}^{\not D} \stackrel{\sim}{\to} F_* \Omega_{X/k}^{\bullet},$$

with the following properties:

- (i) $H^i(\Omega_{X/k}^{\not D})\stackrel{\sim}{ o} \Omega_{X/k}^i$ canonical, multiplicative;
- (ii) Θ is a derivation, and acts by -i on H^i ;
- (iii) ε is multiplicative and induces the Cartier isomorphism $C^{-1}: \Omega^i_{X'/k} \stackrel{\sim}{\to} H^i(F_*\Omega^{\bullet}_{X/k})$ on H^i .

 $^{^{1}\}mathrm{From}$ now on, derived categories are taken in the derived $\infty\text{-categorical}$ sense.

The complex $\Omega_{X/k}^{\mathcal{D}}$ is called the diffracted Hodge complex of X (relative to \widetilde{X}), and Θ the Sen operator.

Let $d = \dim(X)$. As, by (ii) and (iii), $\prod_{0 \le i \le d} (\Theta + i)$ is nilpotent, we get a decomposition into generalized eigenspaces:

Corollary. Under the assumptions of th. 1, there is a canonically defined endomorphism Θ of $F_*\Omega^{\bullet}_{X/k}$, and a canonical decomposition

$$F_*\Omega^{ullet}_{X/k} = \bigoplus_{i \in \mathbf{Z}/p\mathbf{Z}} (F_*\Omega^{ullet}_{X/k})_i$$

stable under Θ , such that, for all $i \in \mathbf{Z}/p\mathbf{Z}$,

$$\Theta|(F_*\Omega^{\bullet}_{X/k})_i = -i + \Theta_i,$$

where Θ_i is a nilpotent endomorphism of $(F_*\Omega^{\bullet}_{X/k})_i$.

In particular, for any $a \in \mathbf{Z}$,

$$(0.2) \qquad \varepsilon: \varphi^* \Omega_{X/k}^{\not D} \stackrel{\sim}{\to} F_* \Omega_{X/k}^{\bullet},$$

induces a canonical decomposition

$$(0.3) \qquad \bigoplus_{a \leqslant i < a+p} \Omega^{i}_{X'/k}[-i] \stackrel{\sim}{\to} \tau^{[a,a+p-1]} F_* \Omega^{\bullet}_{X/k},$$

a refinement of (0.1) and of a result of Achinger-Suh [A].

Remarks. (1) It can be shown [LM] that, for a = 0, the decomposition (0.3) coincides with that of [DI] (see end of section 6).

- (2) Petrov [P] has constructed an example of a smooth X/k, lifted to W(k), such that $\Theta_0 \neq 0$.
- (3) Suppose X admits a smooth formal lift Z/W(k) with $Z\otimes W_2(k)=\widetilde{X}$. Then $\Omega_{X/k}^{\not D}=\Omega_{Z/W(k)}^{\not D}\otimes^L k$, where $\Omega_{Z/W(k)}^{\not D}$ is a certain perfect complex of \mathcal{O}_Z -modules, again called a diffracted Hodge complex, and Θ is induced by an endomorphism Θ of $\Omega_{Z/W(k)}^{\not D}$, inducing -i on $H^i(\Omega_{Z/W(k)}^{\not D})=\Omega_{Z/W(k)}^i$.

1. Strategy

For simplicity and convenience of references to [BL] we'll work with liftings /W(k) rather than $/W_2(k)$ (adaptation to $/W_2(k)$ easy but technical, see [BL1, 5.16] and remarks at the end of section 5).

Change notation. Fix (formal smooth) X/W(k) lifting $Y := X \otimes_{W(k)} k$.

Main steps

(a) First assume X affine, $X = \mathrm{Spf}(R)$. Using Hodge-Tate cohomology of X with respect to all (bounded) prisms over $\mathrm{Spf}(W(k))$ (forming the so-called absolute prismatic site $\mathrm{Spf}(W(k))_{\triangle}$ of $\mathrm{Spf}(W(k))$, construct an absolute Hodge-Tate crystal \mathcal{C}_R in p-complete complexes over $\mathrm{Spf}(W(k))_{\triangle}$.

(b) A new input (Bhatt-Lurie, Drinfeld): the Cartier-Witt stack WCart and the Hodge-Tate stack over Spf(W(k)):

$$\operatorname{WCart}^{\operatorname{HT}}_{\operatorname{Spf}(W(k))} \hookrightarrow \operatorname{WCart}$$

(an effective Cartier divisor in the Cartier-Witt stack). The universal property of Witt rings with respect to δ -structures implies that WCart plays the role of an attractor for absolute prisms over $\mathrm{Spf}(W(k))$.

Using this, interpret (p-complete) absolute Hodge-Tate crystals on $\operatorname{Spf}(W(k))$ as (p-complete) complexes on the Hodge-Tate stack.

Then realize the Hodge-Tate stack as the classifying stack BG of a certain commutative affine group scheme G over $\mathrm{Spf}(W(k))$ containing μ_p , and whose quotient G/μ_p is isomorphic to \mathbf{G}_a^{\sharp} , the PD-hull of \mathbf{G}_a at the origin.

(c) Interpret (p-complete) complexes on BG as (p-complete) complexes K of W(k)-modules, endowed with a certain endomorphism Θ , called the Sen operator, such that $\Theta^p - \Theta$ is nilpotent on each $H^i(K \otimes^L k)$. In particular, the Hodge-Tate crystal \mathcal{C}_R above can be described by a p-complete object

$$\Omega_{R/W(k)}^{\not D}$$

of D(W(k)), endowed with a Sen operator Θ . Using the Hodge-Tate comparison theorem, promote $\Omega_{R/W(k)}^{\not D}$ to a perfect complex in D(R), endowed with a multiplicative, increasing filtration $\mathrm{Fil}^{\mathrm{conj}}_{\bullet}$, with $\mathrm{gr}_i \overset{\cdot}{\to} \Omega_{R/W(k)}^i[-i]$, and Θ acting on gr_i by -i

(d) For a general formal smooth $f: X \to \mathrm{Spf}(W(k))$, pasting the $\Omega^{\not D}_{R/W(k)}$ for the various affine opens $U = \mathrm{Spf}(R)$ of X gives a filtered perfect complex of \mathcal{O}_X -modules

$$\Omega_{X/W(k)}^{\not D}$$

called the diffracted Hodge complex of X/W(k) (a twisted form of the Hodge complex $\oplus \Omega^i_{X/W(k)}[-i]$), with $\operatorname{gr}_i \stackrel{\sim}{\to} \Omega^i_{X/W(k)}[-i]$, and equipped with a Sen operator Θ , acting by -i on $H^i(\Omega^{\mathcal{D}}_{X/W(k)})$.

(e) Show that the object of $D(X, \mathcal{O}_X)$ underlying $\Omega_{X/W(k)}^{\mathcal{D}}$ is the relative Hodge-Tate cohomology complex $\overline{\mathbb{A}}_{X/A}$ of X over a special prism (A, I) with A/I = W(k), deduced from the q-de Rham prism (by taking invariants under \mathbf{F}_p^* and base changing to W(k)).

Finally, using this and the prismatic de Rham comparison theorem for $\overline{\mathbb{A}}_{X/A}$, construct the desired isomorphism

$$\Omega_{Y'/k}^{\not D} \stackrel{\sim}{\to} F_* \Omega_{Y/k}^{\bullet}$$

inducing C^{-1} on H^i , where

$$\Omega_{Y/k}^{\not D} := \Omega_{X/W(k)}^{\not D} \otimes_{W(k)} k.$$

2. Prismatic and Hodge-Tate cohomology complexes

Recall: Prism: (A, I, δ) :

• $\delta:A\to A$: a delta structure; $x\mapsto \varphi(x):=x^p+p\delta(x)$ lifts Frobenius

$$(\delta \leftrightarrow (\text{section of } W_2(A) \to A) \leftrightarrow (\text{lift of } F: A/^L p \to A/^L p))$$

- $I \subset A$: a Cartier divisor; A: derived (p, I)-complete (i.e., $A \stackrel{\sim}{\to} R \varprojlim A_{(t_1 \mapsto p^n, t_2 \mapsto d^n)} \otimes^L_{\mathbf{Z}[t_1, t_2]} \mathbf{Z}$ if I = (d))
- $p \in I + \varphi(I)A$ ($\Leftrightarrow I$ locally generated by distinguished d, i.e. $\delta(d) \in A^*$)

Map of prisms: $(A, I) \rightarrow (B, J)$; J = IB automatic

Examples: $(\mathbf{Z}_p, (p), \varphi(x) = x)$ (the crystalline prism); $(\mathbf{Z}_p[[u]], (u-p), \varphi(u) = u^p)$ (a Breuil-Kisin prism);

$$(\mathbf{Z}_p[[q-1]],([p]_q:=1+q+\cdots+q^{p-1}),arphi(q)=q^p)$$
 (the q -de Rham prism)

$$(A, I)$$
 bounded: $A[p^{\infty}] = A[p^N]$, some $N \ (\Rightarrow A \text{ classically } (p, I) \text{-complete})$

(Relative) prismatic site [BS, 4.1]:

For (A, I) bounded, X/(A/I) smooth formal, prismatic site $(X/A)_{\triangle}$:

Objects:

with (B, IB) bounded.

Maps: obvious

Covers: $(B, IB) \rightarrow (C, IC)$ faithfully flat (i.e., C (p, IB)-completely faithfully flat over B, [BS, 1.2])

Structure sheaf $\mathcal{O}_{\mathbb{A}}$: $(X \leftarrow \operatorname{Spf}(B/I) \to \operatorname{Spf}(B)) \mapsto B$;

Hodge-Tate sheaf $\overline{\mathcal{O}}$: $(-) \mapsto B/IB$; both with φ -actions

Let (A, I) a bounded prism, set $\overline{A} := A/I$. Fix X/\overline{A} smooth formal.

Prismatic cohomology complex [BS, 4.2]:

$$\triangle_{X/A} := R\nu_*\mathcal{O}_{\triangle} \in D(X_{et}, A)$$

where ν is the canonical map of topoi

$$\nu: (\widetilde{X/A})_{\mathbb{A}} \to \widetilde{X_{\mathsf{et}}}.$$

$$R\Gamma_{\underline{\mathbb{A}}}(X/A) := R\Gamma((X/A)_{\underline{\mathbb{A}}}, \mathcal{O}) = R\Gamma(X_{et}, R\nu_*\mathcal{O}_{\underline{\mathbb{A}}}) \in D(A).$$

Hodge-Tate cohomology complex [BS, 4.2]

$$\overline{\mathbb{\Delta}}_{X/A} := R\nu_* \overline{\mathcal{O}}_{\mathbb{\Delta}} = \mathbb{\Delta}_{X/A} \otimes^L_A \overline{A} \in D(X_{et}, \mathcal{O}_X).$$

The Hodge-Tate comparison theorem [BS 4.11] gives an \mathcal{O}_X -linear isomorphism

$$(HT) \qquad \qquad \Omega^{i}_{X/\overline{A}} \otimes (I/I^{2})^{\otimes -i} \stackrel{\sim}{\to} H^{i}(\overline{\mathbb{A}}_{X/A}),$$

hence $\overline{\mathbb{A}}_{X/A}$ is a perfect complex of \mathcal{O}_X -modules (with φ -action).

On the other hand, the de Rham comparison theorem [BS 15.4] gives a φ -linear isomorphism (in $D(X, \overline{A})$)

$$(dR) \qquad \varphi_A^* \triangle_{X/A} \otimes^L \overline{A} \stackrel{\sim}{(\to \varphi_A^* \overline{\triangle}_{X/A})} \stackrel{\sim}{\to} \Omega_{X/\overline{A}}^{\bullet}.$$

Absolute prismatic site [BL, 4.4.27]:

For a p-adic formal scheme T/\mathbf{Z}_p , define the absolute prismatic site of T,

$$T_{\mathbb{A}}$$
,

as the category of maps

$$\mathcal{T} \stackrel{a}{\leftarrow} \operatorname{Spf}(\overline{A}) \to \operatorname{Spf}(A)$$

where (A, I), $\overline{A} = A/I$, runs through all bounded prisms, with the obvious maps, and the topology given by maps with $(A, I) \rightarrow (B, IB)$ faithfully flat.

Structural sheaves: $\mathcal{O}_{\underline{\mathbb{A}}}$ (or \mathcal{O}): $(A, I) \mapsto A$, $\overline{\mathcal{O}}_{\underline{\mathbb{A}}}$ (or $\overline{\mathcal{O}}$): $(A, I) \mapsto A/I$

Example: $\operatorname{Spf}(\mathbf{Z}_{\rho})_{\mathbb{A}}$ is the category of all bounded prisms.

Definition. $\widehat{D}(A)$:= full subcategory of D(A) consisting of (p, I)-complete objects.

Definitions. (1) A *p*-complete prismatic crystal on T_{\triangle} is an object E of $D(T_{\triangle}, \mathcal{O})$ such that, for all $A = (A, I, a) \in T_{\triangle}$, $E(A) \in \widehat{D}(A)$, and for all maps $(A, I, a) \to (B, IB, b)$, the induced map

$$B\widehat{\otimes}_A^L E(A) \to E(B)$$

is an isomorphism. Denote by

$$\widehat{D}_{\operatorname{crys}}(T_{\underline{\mathbb{A}}},\mathcal{O})$$

the full subcategory of $D(T_{\triangle}, \mathcal{O})$ consisting of p-complete prismatic crystals.

(2) A *p*-complete Hodge-Tate crystal on $T_{\underline{A}}$ is an object E of $D(T_{\underline{A}}, \overline{\mathcal{O}})$ such that, for all $A = (A, I, a) \in T_{\underline{A}}$, $E(\overline{A}) \in \widehat{D}(\overline{A})$, and for all maps $(A, I, a) \to (B, IB, b)$, the induced map

$$\overline{B}\widehat{\otimes}^{\underline{L}}_{\overline{A}}E(\overline{A}) \to E(\overline{B})$$

is an isomorphism. Denote by

$$\widehat{D}_{\operatorname{crys}}(T_{\underline{\mathbb{A}}},\overline{\mathcal{O}})$$

the full subcategory of $D(T_{\triangle}, \overline{\mathcal{O}})$ consisting of p-complete Hodge-Tate crystals.

Examples. Let $f: X \to \operatorname{Spf}(W(k))$ be formal smooth. Then:

$$Rf_*\mathcal{O}_{\mathbb{A}}$$
,

$$(A, I, a) \mapsto (Rf_*\mathcal{O}_{\mathbb{A}})_{(A, I)} = R\Gamma_{\mathbb{A}}(X_{\overline{A}}/A) := R\Gamma((X_{\overline{A}}/A)_{\mathbb{A}}, \mathcal{O}_{\mathbb{A}}) \in \widehat{D}(A)$$

belongs to $\widehat{D}_{\text{crvs}}(\operatorname{Spf}(W(k))_{\mathbb{A}}, \mathcal{O})$

$$Rf_*\overline{\mathcal{O}}_{\mathbb{A}}$$
,

$$(A, I, a) \mapsto (Rf_* \overline{\mathcal{O}}_{\underline{\mathbb{A}}})_{(A, I)} = R\Gamma_{\underline{\overline{\mathbb{A}}}}(X_{\overline{A}}/A) := R\Gamma((X_{\overline{A}}/A)_{\underline{\mathbb{A}}}, \overline{\mathcal{O}}_{\underline{\mathbb{A}}}) \in \widehat{D}(\overline{A})$$

belongs to $\widehat{D}_{\operatorname{crys}}(\operatorname{Spf}(W(k))_{\mathbb{A}},\overline{\mathcal{O}})$

3. A strange attractor: the Cartier-Witt stack

A priori, the category $\operatorname{Spf}(\mathbf{Z}_p)_{\triangle}$ of all bounded prisms looks chaotic. However, these prisms are in a kind of magnetic field: they are all attracted by a single big formal stack, the Cartier-Witt stack. The local symmetries of this stack, and of its companion the Hodge-Tate stack, yield the hidden structure on $\Omega^{\bullet}_{Y/k}$ described above.

Definition [BL, 3.1.1]. A generalized Cartier divisor on a scheme X is a pair (\mathcal{I},α) , where \mathcal{I} is an invertible \mathcal{O}_X -module and $\alpha:\mathcal{I}\to\mathcal{O}_X$ a morphism of \mathcal{O}_X -modules. When $X=\operatorname{Spec}(A)$, we identify generalized Cartier divisors on X with pairs (I,α) , where I is an invertible A-module and $\alpha:I\to A$ an A-linear map. Morphisms are defined in the obvious way.

Remarks

- 1. This notion, under the name of "divisor", was introduced by Deligne in 1988². A similar notion was independently devised by Faltings at about the same time [F].
- 2. A generalized Cartier divisor on X generates (corresponds to) a log structure M_X on X called a Deligne-Faltings log structure of rank 1. In the early 2000's Lafforgue observed that such an M_X corresponds to a morphism $X \to [\mathbf{A}^1/\mathbf{G}_m]$. That triggered Olsson's work [OI].
- 3. A generalized Cartier divisor (I,α) on A defines a quasi-ideal in A in the sense of Drinfeld [Dr], i.e. a differential graded algebra $(I \stackrel{\alpha}{\to} A)$ concentrated in degree 0 and -1, hence an animated ring $[I \stackrel{\alpha}{\to} A]$ (object of the derived category of simplicial (commutative) rings).

²Letter to L. Illusie, June 1, 1988

The Cartier-Witt stack (Drinfeld's Σ) is the formal stack over \mathbf{Z}_p

$$WCart := [WCart_0/W^{\times}]$$

where:

W := (p-typical) Witt scheme over \mathbf{Z}_p

WCart₀:= formal completion of W along locally closed subscheme defined by $p = x_0 = 0$, $x_1 \neq 0$, the formal scheme of primitive Witt vectors:

$$ext{WCart}_0 = ext{Spf}(A^0)$$
 $A^0 := \mathbf{Z}_{\rho}[[x_0]][x_1, x_1^{-1}, x_2, x_3, \cdots]\hat{)}$

where hat means p-completion (and the ring structure on A^0 is given by the Witt polynomials).

For a p-nilpotent ring R, $\mathrm{WCart}_0(R)$ is the set of $a=(a_0,a_1,\cdots)\in W(R)$ with a_0 nilpotent and a_1 invertible (\Leftrightarrow $\delta(a)$ invertible³).

 $W^{\times} \subset W := \mathbf{Z}_{p}$ -group scheme of units in W, acting on WCart_{0} by multiplication.

³NB. $Fa = (a_0^p + pa_1, \cdots), a^p = (a_0^p, \cdots), \delta(a) = (a_1, \cdots).$

For a ring R,

is defined as the empty category if p is not nilpotent in R, and, if R is p-nilpotent, is the groupoid whose objects are Cartier-Witt divisors on R.

$$(I \stackrel{\alpha}{\rightarrow} W(R))$$

i.e., generalized Cartier divisors on W(R) such that (Zariski locally over $\operatorname{Spec}(R)$) α maps I to $\operatorname{WCart}_0(R)$ ($\Leftrightarrow \operatorname{Im}(I \to W(R) \to R)$ is nilpotent and $\operatorname{Im}(I \to W(R) \xrightarrow{\delta} W(R))$ generates the unit ideal).

The attracting property of WCart

Let (A, I) be a bounded⁴ prism. Then the formal scheme $\mathrm{Spf}(A)$ (with the (p, I)-adic topology) canonically maps to the formal stack WCart by a map

$$\rho_{(A,I)}: \mathrm{Spf}(A) \to \mathrm{WCart}$$

defined as follows. For a point $f:A\to R$ of $\mathrm{Spf}(A)$ with value in a (p-nilpotent) ring R, f uniquely lifts to a δ -map $\widetilde{f}:A\to W(R)$, by which the inclusion $I\subset A$ induces a generalized Cartier divisor

$$\rho_{(A,I)}(f) = (I \otimes_A W(R) \stackrel{\alpha}{\to} W(R)) \in WCart(R).$$

Then: $f \mapsto \rho_{(A,I)}(f)$ defines $\rho_{(A,I)}$.

⁴This ensures that A is classically (p, I)-complete.

Stacky description of prismatic crystals

The $(\infty$ -)category of quasi-coherent complexes on WCart,

$$D(\operatorname{WCart}) := \underbrace{\lim}_{\operatorname{Spec}(R) \to \operatorname{WCart}} D(R)$$

(sometimes denoted $D_{\rm qc}({\rm WCart})$) is by definition the inverse limit of the categories D(R) indexed by the category of points of WCart, i.e. objects ${\mathcal F}$ are coherent rules

$$((I \to W(R)) \in WCart(R)) \mapsto \mathcal{F}((I \to W(R)) \in D(R).$$

For a bounded prism (A, I), $\rho_{(A,I)} : \operatorname{Spf}(A) \to \operatorname{WCart}$, induces a pull-back map

$$\rho_{(A,I)}^*: D(\mathrm{WCart}) \to D(\mathrm{Spf}(A)) = \widehat{D}(A).$$

For variable (A, I) these maps define a functor

$$D(\mathrm{WCart}) \to \widehat{D}_{\mathrm{crys}}(\mathrm{Spf}(\mathbf{Z}_p)_{\mathbb{A}}, \mathcal{O})$$

where the right-hand side is the category of prismatic crystals on the absolute prismatic site $\operatorname{Spf}(\mathbf{Z}_p)_{\mathbb{A}}$ (BL, 3.3.5).

Theorem 2 (BL, Prop. 3.3.5). The functor

$$D(\mathrm{WCart}) \to \widehat{D}_{\mathrm{crys}}(\mathrm{Spf}(\mathsf{Z}_p)_{\mathbb{A}}, \mathcal{O})$$

is an equivalence.

In a sense, the Cartier-Witt attractor plays the role of a final object for the site $\operatorname{Spf}(\mathbf{Z}_p)_{\mathbb{A}}$.

Proof. Use the prism $(A^0, I_0 := (x_0))$, where A^0 is the coordinate ring of WCart_0 , and the Zariski cover $\operatorname{Spf}(A^0) \to \operatorname{WCart}$.

More generally, for any (bounded) p-adic formal scheme X, there is defined a formal stack

over \mathbf{Z}_p , called the Cartier-Witt stack of X, which depends functorially on X. For $X = \mathrm{Spf}(W(k))$ as above,

$$\operatorname{WCart}_{\operatorname{Spf}(W(k))} = \operatorname{Spf}(W(k)) \times_{\operatorname{Spf}(\mathbf{Z}_p)} \operatorname{WCart}$$

and the analogue of Th. 2 holds.

For R a p-nilpotent ring, $WCart_X(R)$ is the groupoid

$$\operatorname{WCart}_X(R) = \{ (I \stackrel{\alpha}{\to} W(R)), x \in X(W(R)/^L I \}),$$

where $(I \stackrel{\alpha}{\to} W(R))$ is a Cartier-Witt divisor on R, and x a point of X with value in the animated ring $W(R)/^L I$ defined by $(I \stackrel{\alpha}{\to} W(R))$.

Examples.

- $WCart_{Spf(\mathbf{Z}_p)} = WCart$
- $\operatorname{WCart}_{\operatorname{Spec}(k)} = \operatorname{Spf}(W(k)).$

The construction $X \mapsto WCart_X$ leads to a theory of prismatization, developed in [BL1].

4. The Hodge-Tate stack

The category $D(\operatorname{WCart})$ is hard to describe "concretely", but It turns out that WCart contains an effective Cartier divisor, the Hodge-Tate divisor $\operatorname{WCart}^{HT}$, whose category of quasi-coherent objects on it has a simple description.

The Hodge-Tate divisor

Definition. The Hodge-Tate divisor is the closed substack

$$WCart^{HT} \hookrightarrow WCart$$
,

whose R-points consist of Cartier-Witt divisors $I \stackrel{\alpha}{\to} W(R)$ such that the composition $I \stackrel{\alpha}{\to} W(R) \to R$ is zero. In other words, it's the fibre product

$$\begin{aligned} \operatorname{WCart}^{\operatorname{HT}} & \longrightarrow \operatorname{WCart} = \left[\operatorname{WCart}_0 / W^* \right] \\ \downarrow & & \downarrow \\ B\mathbf{G}_m = \left[\{ 0 \} / \mathbf{G}_m \right] & \longrightarrow \left[\widehat{\mathbf{A}}^1 / \mathbf{G}_m \right] \end{aligned}$$

where the right vertical map is induced by the projection $(a_0, a_1, \dots) \mapsto a_0$.

Equivalently,

$$\mathrm{WCart}^{\mathrm{HT}} \stackrel{\sim}{\to} [VW^*/W^*].$$

Thus, $R \mapsto (V(1) \in VW^*(R))$ yields a canonical point, the Hodge-Tate point,

$$\eta := V(1) : \operatorname{Spf}(\mathbf{Z}_p) \to \operatorname{WCart}^{\operatorname{HT}}.$$

Theorem 3 ([Dr], [BL]). The HodgeTate point is a flat cover and induces an isomorphism

$$BW^*[F] := [\operatorname{Spf}(\mathbf{Z}_p)/W^*[F]] \xrightarrow{\sim} \operatorname{WCart}^{\operatorname{HT}},$$

where $W^*[F]$ is the stabilizer of η , i.e., the group scheme (over \mathbf{Z}_p)

$$W^*[F] := \operatorname{Ker}(F : W^* \to W^*).$$

Proof. By xVy = V(Fx.y) and faithful flatness of $F: W^* \to W^*$, $VW^* = W^*.V(1)$, hence

$$WCart^{HT} = Cone(W^* \xrightarrow{F} W^*) = BW^*[F].$$

The left vertical map in above cartesian square is thus identified to

$$BW^*[F] \to B\mathbf{G}_m$$

Main results ([BL], [Dr])

- \bullet Identification of Hodge-Tate crystals with quasi-coherent complexes on $\mathrm{WCart}^{\mathrm{HT}}$
- Identification of $W^*[F]$ with \mathbf{G}_m^{\sharp} , PD-envelope at 1 of \mathbf{G}_m , and description as an extension

$$0 o \mu_{p} o \mathbf{G}_{m}^{\sharp} o \mathbf{G}_{a}^{\sharp} o 0,$$

where $\mathbf{G}_a^{\sharp} = \text{PD-envelope}$ of \mathbf{G}_a at 0

• Identification of $D(\mathrm{WCart}^{\mathrm{HT}})$ with the category of Sen complexes, i.e. the full subcategory of the (∞) -category $\widehat{D}(\mathbf{Z}_p[\Theta])$ of objects M of $\widehat{D}(\mathbf{Z}_p)$ endowed with an endomorphism Θ such that Θ (the Sen operator) has the property that $\Theta^p - \Theta$ on $H^*(M \otimes^L \mathbf{F}_p)$ is locally nilpotent.

(Discussed in Section 5.)

 \bullet Identification of Hodge-Tate crystals with quasi-coherent complexes on $WCart^{HT}$

Similarly to D(WCart) define

$$D(\operatorname{WCart}^{\operatorname{HT}}) := \varprojlim_{\operatorname{Spec}(R) o \operatorname{WCart}^{\operatorname{HT}}} D(R).$$

If (A, I) is a bounded prism, then $\rho_{(A,I)} = \mathrm{Spf}(A) \to \mathrm{WCart}$ restricts to

$$\rho_{(A,I)}^{\mathrm{HT}}:\mathrm{Spf}(A/I)\to\mathrm{WCart}^{\mathrm{HT}},$$

$$\rho_{(A,I)}(f:A/I\to R)=(I\otimes_A W(R)\stackrel{\alpha}{\to} W(R))\in \mathrm{WCart}^{\mathrm{HT}}(R).$$

From

$$\rho_{(A,I)}^{\mathrm{HT}}: \mathrm{Spf}(A/I) \to \mathrm{WCart}^{\mathrm{HT}},$$

get pull-back map

$$(\rho_{(A,I)}^{\mathrm{HT}})^* : D(\mathrm{WCart}^{\mathrm{HT}}) \to \widehat{D}(A/I),$$

and functor

$$\mathcal{D}(\operatorname{WCart}^{\operatorname{HT}}) \to \varprojlim_{(A,I)} \widehat{\mathcal{D}}(A/I) = \widehat{\mathcal{D}}_{\operatorname{crys}}(\operatorname{Spf}(\mathbf{Z}_{\rho})_{\underline{\mathbb{A}}}, \overline{\mathcal{O}}),$$

where the right hand side is the $(\infty$ -)category of *p*-complete Hodge-Tate crystals (section 2, end). The above classification of *p*-complete crystals, restricted to Hodge-Tate crystals, yields:

Theorem 4. The above functor is an equivalence:

$$D(\operatorname{WCart}^{\operatorname{HT}}) \stackrel{\sim}{\to} \widehat{D}_{\operatorname{crys}}(\operatorname{Spf}(\mathbf{Z}_p)_{\mathbb{A}}, \overline{\mathcal{O}})$$

More generally, given a p-adic formal scheme X, one defines the Hodge-Tate divisor $\operatorname{WCart}_X^{\operatorname{HT}}$ by the pull-back square:

$$\begin{array}{ccc} \operatorname{WCart}_X^{\operatorname{HT}} & \longrightarrow \operatorname{WCart}_X \ . \\ & & & \downarrow \\ \operatorname{WCart}^{\operatorname{HT}} & \longrightarrow \operatorname{WCart} \end{array}$$

Examples. For k as above,

$$WCart_{Spec(k)}^{HT} = Spec(k),$$

$$\operatorname{WCart}^{\operatorname{HT}}_{\operatorname{Spf}(W(k))} = \operatorname{Spf}(W(k)) \times_{\operatorname{Spf}(\mathbf{Z}_{\rho})} \operatorname{WCart}^{\operatorname{HT}}.$$

and we have the equivalence

$$D(\operatorname{WCart}^{\operatorname{HT}}_{\operatorname{Spf}(\operatorname{W}(\mathtt{k}))}) \overset{\sim}{\to} \widehat{D}_{\operatorname{crys}}(\operatorname{Spf}(W(k))_{\underline{\mathbb{A}}}, \overline{\mathcal{O}}),$$

Corollary. There are canonical equivalences

$$\widehat{D}_{\operatorname{crys}}(\operatorname{Spf}(W(k))_{\triangle}, \overline{\mathcal{O}}) \overset{\sim}{\leftarrow} D(\operatorname{WCart}^{\operatorname{HT}}_{\operatorname{Spf}(W(k))}) \overset{\eta^*}{\to} D((BW^*[F])_{\operatorname{Spf}(W(k))}),$$

$$\mathcal{E} \mapsto \mathcal{E}_{\eta} := \eta^*(\mathcal{E})$$

where

- $\eta = V(1) : \mathrm{Spf}(W(k)) \to \mathrm{WCart}^{\mathrm{HT}}_{\mathrm{Spf}(W(k))}$ is the canonical point defined above
- a Hodge-Tate crystal is identified with the corresponding quasi-coherent complex on the Hodge-Tate stack.
- an object \mathcal{E} of $D(\operatorname{WCart}^{\operatorname{HT}}_{\operatorname{Spf}(W(k))}) = D((BW^*[F])_{\operatorname{Spf}(W(k))})$ is identified by $\mathcal{E} \mapsto \mathcal{E}_{\eta} := \eta^*(\mathcal{E})$ with a pair of an object $E \in \widehat{D}(\operatorname{Spf}(W(k)))$ and an action α of \mathbf{G}_m^{\sharp} on it.

The group scheme \mathbf{G}_{m}^{\sharp}

Proposition ([Dr, 3.2.6], [BL, 3.4.11, 3.5.18]) (i) The composite $W[F] \rightarrow W \rightarrow G_a$ induces an isomorphism

$$W[F] \stackrel{\sim}{ o} \mathsf{G}_{\mathsf{a}}^\sharp = \operatorname{Spec}(D_{(t)}\mathsf{Z}_{\rho}[t]) = \operatorname{Spec}(\mathsf{\Gamma}_{\mathsf{Z}_{\rho}}(\mathsf{Z}_{\rho}t)).$$

(ii) The composite $W^*[F] o W^* o \mathbf{G}_m$ induces an isomorphism

$$W^*[F] \stackrel{\sim}{\to} \mathbf{G}_m^{\sharp} = \operatorname{Spec}(D_{(t-1)}(\mathbf{Z}_p[t, t^{-1}]).$$

(iii) There is an exact sequence of group schemes (over \mathbf{Z}_p)

$$0 \to \mu_p \stackrel{[.]}{\to} \mathbf{G}_m^{\sharp} \stackrel{\log(-)}{\to} \mathbf{G}_a^{\sharp} \to 0,$$

split over \mathbf{F}_{p} , where

$$\mathsf{G}_{a}^{\sharp} := \operatorname{Spec}(\mathsf{Z}_{p}\langle t \rangle) (\stackrel{\sim}{\to} W[F])$$

is the PD-envelope of G_a at the origin.

Proof. Main point is (i). Drinfeld's argument: use description of $\mathbf{Z}_p\langle t\rangle$ by generators $u_n=t^{p^n}/p^{\frac{p^n-1}{p-1}}$ and relations $u_n^p=pu_{n+1}$, and Joyal's theorem to the effect that the coordinate ring $B=\Gamma(W,\mathcal{O})$ of W is the free δ -ring on one indeterminate v_0 , i.e., is the

$$B = \mathbf{Z}_{p}[y_0, y_1, \cdots],$$

with $y_n = \delta^n(y_0)$.

polynomial ring

5. Sen operators, Hodge diffraction

Let $\mathcal{E} \in D(\mathrm{WCart^{HT}}) = D(B\mathbf{G}_m^{\sharp})^5$, that we identify with the pair of an object $E = \mathcal{E}_{\eta} \in \widehat{D}(\mathrm{Spf}(W(k)))$ and an action $\alpha : \mathbf{G}_m^{\sharp} \to \mathrm{Aut}(E)$. Consider the induced infinitesimal action

$$\operatorname{Lie}(\alpha) : \operatorname{Lie}(\mathbf{G}_m^{\sharp}) \to \operatorname{End}(E),$$

where $\operatorname{Lie}(\mathbf{G}_m^{\sharp}) = \mathbf{G}_m^{\sharp}(\operatorname{Spf}(W(k))[\varepsilon]/(\varepsilon^2))$. In particular, the point $1 + [\varepsilon] \in \operatorname{Lie}(\mathbf{G}_m^{\sharp})$ gives an endomorphism

$$\Theta_{\mathcal{E}} \in \operatorname{End}(E)$$

called the Sen operator.

The Sen operators satisfy a Leibniz rule

$$\Theta_{\mathcal{E} \otimes \mathcal{F}} = \Theta_{\mathcal{E}} \otimes \operatorname{Id}_{\mathcal{F}} + \operatorname{Id}_{\mathcal{E}} \otimes \Theta_{\mathcal{F}}.$$

⁵In this section we work over W(k) and in general omit the subscript Spf(W(k)).

Examples. (1)
$$\Theta_{\mathcal{O}_{\mathrm{WCart}^{\mathrm{HT}}}} = 0$$
.

(2) For the (Hodge-Tate) Breuil-Kisin twist $\mathcal{O}_{\mathrm{WCart}^{\mathrm{HT}}}\{1\}$, i.e., the line bundle on $\mathrm{WCart}^{\mathrm{HT}}$ defined by $\mathcal{I}/\mathcal{I}^2$, where $\mathcal{I}:(A,I)\mapsto I$:

$$\Theta_{\mathcal{O}_{\mathrm{WCart}^{\mathrm{HT}}}\{1\}}=\mathrm{Id}.$$

Hence $\Theta_{\mathcal{O}_{WCart}\mathrm{HT}\{n\}}=n\mathrm{Id}$.

(Note: The Hodge-Tate crystal $\mathcal{O}_{\mathrm{WCart}^{\mathrm{HT}}}\{1\}$ is induced on the Hodge-Tate divisor from the (crystalline) Breuil-Kisin line bundle $\mathcal{O}_{\mathrm{WCart}}\{1\}$), a prismatic F-crystal [BL, 3.3.8] satisfying $\varphi^*\mathcal{O}_{\mathrm{WCart}}\{1\} \overset{\sim}{\to} \mathcal{I}^{-1} \otimes \mathcal{O}_{\mathrm{WCart}}\{1\}$).

(3) The cartesian square

$$\begin{array}{ccc}
\mathbf{G}_{m}^{\sharp} & \longrightarrow & \operatorname{Spf}(W(k)) \\
\downarrow & & & \eta \downarrow \\
\operatorname{Spf}(W(k)) & \xrightarrow{\eta} & \operatorname{WCart}^{\operatorname{HT}}
\end{array}$$

yields

$$\eta^*\eta_*\mathcal{O}=\widehat{\mathcal{O}}_{\mathbf{G}_m}^\sharp,$$

where the right hand side denotes the *p*-completion of the coordinate ring $D_{(t-1)}(W(k)[t, t^{-1}])$ of \mathbf{G}_m^{\sharp} . One has:

$$\Theta_{\widehat{\mathcal{O}}_{\mathbf{G}_{--}}^{\sharp}}=t\partial/\partial t.$$

Denote by

$$\widehat{D}(W(k)[\Theta])$$

the category of pairs (M, Θ_M) where M is a p-complete object of D(W(k)) and Θ_M an endomorphism of M.

Theorem 5 [BL, 3.5.8]. The functor

$$D(\operatorname{WCart}^{\operatorname{HT}}_{\operatorname{Spf}(W(k))}) \to \widehat{D}(W(k)[\Theta]), \mathcal{E} \mapsto (\mathcal{E}_{\eta}, \Theta_{\mathcal{E}})$$

is fully faithful and its essential image consists of pairs (M, Θ_M) such that $(\Theta_M)^p - \Theta_M$ is locally nilpotent⁶ on $H^*(M \otimes_{W(k)}^L k)$ (such pairs are called Sen complexes).

⁶i.e., for each $x \in H^i$, there exists n(x) such that $(\Theta_M^p - \Theta_M)^n . x = 0$ for $n \ge n(x)$.

Proof. Main points: (i) A fixed point formula: for $\mathcal{E} \in D(\mathrm{WCart}^{\mathrm{HT}})$,

$$\mathcal{E}\stackrel{\sim}{ o} (\eta_*\eta^*\mathcal{E})^{\Theta=0}$$

(ii) Dévissage (using the co-regular representation of $\widehat{\mathcal{O}}_{\mathbf{G}_m}^{\sharp}$) showing that $D(\mathrm{WCart}^{\mathrm{HT}})$ is generated, under shifts and colimits, by the Breuil-Kisin twists $\mathcal{O}_{\mathrm{WCart}^{\mathrm{HT}}}\{n\}$ $(n \geqslant 0)$.

The diffracted Hodge complex $\Omega_{X/W(k)}^{\mathcal{D}}$

Let's come back to our formal smooth $f: X \to \operatorname{Spf}(W(k))$.

(a) Assume first that X is affine, $X = \operatorname{Spf}(R)$.

Denote by

$$\Omega_{R/W(k)}^{\emptyset} \in \widehat{D}(\mathrm{Spf}(W(k))[\Theta])$$

the Sen complex associated with the p-complete Hodge-Tate crystal over $\mathrm{Spf}(W(k))$

$$(A,I)\mapsto (Rf_*\overline{\mathcal{O}}_{\underline{\mathbb{A}}})_{(A,I)}=R\Gamma_{\overline{\mathbb{A}}}(X_{\overline{A}}/A):=R\Gamma((X_{\overline{A}}/A)_{\underline{\mathbb{A}}},\overline{\mathcal{O}})\in\widehat{D}(\overline{A}).$$

This Sen complex is called the diffracted Hodge complex of R/k.

The canonical truncation filtration of $R\Gamma_{\overline{\mathbb{A}}}(X_{\overline{A}}/A)$ for $(A,I)\in \mathrm{Spf}(W(k)_{\mathbb{A}})$ defines a canonical increasing, multiplicative filtration of $\Omega^{\not D}_{R/W(k)}$, called the conjugate filtration, which is stable under Θ ,

$$\operatorname{Fil}^{\operatorname{conj}}_{\bullet} = (\operatorname{Fil}^{\operatorname{conj}}_{0} \to \operatorname{Fil}^{\operatorname{conj}}_{1} \to \cdots).$$

It follows from the Hodge-Tate comparison theorem and the smoothness of R/W(k) that

$$\operatorname{gr}_i^{\operatorname{conj}} = \Omega_{R/W(k)}^i [-i] \{-i\}$$

In particular, $\operatorname{Fil}_0^{\operatorname{conj}} = R$, so that $\Omega_{R/W(k)}^{\not D}$ can be promoted to a filtered object of $\widehat{D}(R)[\Theta]$, which is perfect as a filtered object of $\widehat{D}(R)$.

By Examples (1) and (2) above, we have

$$\Theta|H^{i}(\Omega_{R/W(k)}^{\not D})=-i.$$

(b) For a general formal smooth $f: X \to \mathrm{Spf}(W(k))$, the $\Omega^{\mathcal{D}}_{R/W(k)}$ patch to a filtered perfect complex in $D(X, \mathcal{O}_X)$, called the diffracted Hodge complex of X/W(k)

$$\Omega_{X/W(k)}^{\not D}$$
,

equipped with a Sen operator Θ satisfying

$$\Theta|H^i(\Omega_{X/W(k)}^{\not D})=-i.$$

(which implies (the already known) fact that

 $\Theta^p - \Theta$ on $H^*(\Omega_{X/W(k)}^{\not D} \otimes^L k)$ is nilpotent, and even zero (as $H^*(\Omega_{X/W(k)}^{\not D})$ is locally free of finite type over X).

Remarks. (1) The Hodge complex $\Omega^*_{X/W(k)} := \oplus_i \Omega'_{X/W(k)}[-i]$ and the diffracted one $\Omega^{\not D}_{X/W(k)}$ are both filtered perfect complexes in $D(X,\mathcal{O}_X)$: the former one, with the trivial filtration, with $\operatorname{gr}^i = \Omega^i_{X/W(k)}[-i]$, the latter one with the canonical filtration, with $\operatorname{gr}_i = \Omega^i_{X/W(k)}[-i]\{-i\}$ (and the additional structure Θ). Bhatt and Lurie view this deviation and enrichment as a diffraction phenomenon, like a wave being diffracted by a slit $(\eta:\operatorname{Spf}(W(k))\to\operatorname{WCart}^{\operatorname{HT}})$.

(2) Let K := W(k)[1/p] and $C := \widehat{K}$. It is shown in [BL, 3.9.5, 4.7.22] that by extending the scalars to \mathcal{O}_C , and using the prismatic - étale comparison theorem, Θ corresponds to the classical Sen operator on the (semilinear) representation $C \otimes_{W(k)} H^*(X_{\overline{K}}, \mathbf{Z}_p)$ of $\operatorname{Gal}(\overline{K}/K)$ and (for X/W(k) proper and smooth) yields the Hodge-Tate decomposition

$$C \otimes H^n(X_{\overline{K}}, \mathbf{Z}_p) \stackrel{\sim}{\to} \oplus_i C(-i) \otimes_{W(k)} H^{n-i}(X, \Omega^i_{X/W(k)}).$$

End of proof of Th. 1.

Recall: $Y := X \otimes_{W(k)} k$. Define

$$\Omega_{Y/k}^{\not D}:=\Omega_{X/W(k)}^{\not D}\otimes_{W(k)}^{L}k\in D(Y,\mathcal{O}_{Y}),$$

and let again Θ denote the endomorphism induced by the Sen operator of $\Omega_{X/W(k)}^{\not D}$.

As we already know that

- (i) $H^i(\Omega^{\not D}_{Y/k}) \stackrel{\sim}{\to} \Omega^i_{Y/k}$ canonically,
- (ii) Θ is a derivation, and acts by -i on H^i ,

it remains to construct the isomorphism (in $D(Y', \mathcal{O}_{Y'})$)

(0.2)
$$\varepsilon: \varphi^* \Omega_{Y/k}^{\not D} \stackrel{\sim}{\to} F_* \Omega_{Y/k}^{\bullet},$$

with the property:

(iii) ε is multiplicative and (via (i)) induces the Cartier isomorphism $C^{-1}: \Omega^{i}_{Y'/k} \stackrel{\sim}{\to} H^{i}(F_{*}\Omega^{\bullet}_{Y/k})$ on H^{i} .

Interlude: Sen complexes and evaluation of Hodge-Tate crystals

A preliminary is needed for the construction of ε .

Recall that if \mathcal{E} is a (p-complete) Hodge-Tate crystal on $\mathrm{Spf}(W(k))_{\Delta}$, the corresponding Sen complex (E,Θ) is defined by

$$E = \eta^* \mathcal{E},$$

where \mathcal{E} is identified with an object of $D(\operatorname{WCart}^{\operatorname{HT}}) = D(B\mathbf{G}_m^{\sharp})$, and

$$\eta: \mathrm{Spf}(W(k)) \to B\mathbf{G}_m^{\sharp}$$

is the point V(1), corresponding to the trivial \mathbf{G}_m^{\sharp} -torsor on $\mathrm{Spf}(W(k))$.

Let $(A, I) \in \operatorname{Spf}(W(k))_{\mathbb{A}}$. Consider the canonical map

$$\rho_{(A,I)}^{\operatorname{HT}}:\operatorname{Spf}(\overline{A})\to\operatorname{WCart}^{\operatorname{HT}}=B{\sf G}_m^{\sharp}$$

It corresponds to a \mathbf{G}_{m}^{\sharp} -torsor $\mathcal{P}=\mathcal{P}_{(A,I)}$ over $\mathrm{Spf}(\overline{A})$, and this torsor is trivial if and only if one can fill in the diagram (of A-linear maps)

with a top horizontal A-linear map $\xi:I\to W(\overline{A})$ making the square commute, where $\psi_{(A,I)}$ is the unique lift of $A\to \overline{A}$ compatible with δ .

We'll say that (A, I) is neutral if $\rho_{(A,I)}^{\mathrm{HT}}$ factors through η , i.e., $\mathcal{P}_{(A,I)}$ is trivial). If (A, I) is neutral, then

$$\mathcal{E}(\overline{A}) \stackrel{\sim}{ o} \overline{A} \otimes_{W(k)} \mathcal{E}_{\eta}$$

in $\widehat{D}(\overline{A})$.

Consider the q-de Rham prism

$$Q:=(\mathbf{Z}_p[[q-1]],([p]_q),arphi(q)=q^p)$$
 on which $i\in \mathbf{F}_p^*$ acts by $q\mapsto q^{[i]}$ ($[i]\in \mathbf{Z}_p^*$ the Teichmüller representative). Let

$$Q_0 := Q^{\mathsf{F}_p^*}$$

By [BL, 3.8.6]

$$Q_0 = (\mathbf{Z}_p[[\widetilde{p}]], (\widetilde{p}), \varphi(q) = q^p), \ \widetilde{p} := \sum_{i=1}^n q^{[i]}).$$

and the prism $(A, I) = W(k) \otimes_{\mathbf{Z}_n} Q_0$ is neutral.

Remark (Gabber). The element $p - [p] \in W(\mathbf{Z}_p)$ is of the form Vx, for x with ghost coordinates

$$w(x) = (1 - p^{p-1}, 1 - p^{p^2-1}, \cdots),$$

and x is in the image of F if and only if p is odd. Therefore the Breuil-Kisin prism $(A, I) = (W(k)[[u]], (p - u), u \mapsto u^p)$ has A/I = W(k), but is neutral if and only if p is odd.

Construction of ε .

Applying the above to the Hodge-Tate crystal $\mathcal{E} = Rf_*\overline{\mathcal{O}}_{\triangle}$ for $f: \operatorname{Spf}(R) \to \operatorname{Spf}(W(k))$, and the prism $(A, I) = W(k) \otimes_{\mathbf{Z}_{\rho}} Q_0$, with $\overline{A} = W(k)$ we find

$$\Omega_{R/W(k)}^{\not D} \stackrel{\sim}{\to} (Rf_*\overline{\mathcal{O}}_{\mathbb{A}})_{(A,I)}$$

in $\widehat{D}(R)$, and then, for a general formal smooth X/W(k),

$$\Omega_{X/W(k)}^{\not D}\stackrel{\sim}{ o} \overline{\mathbb{A}}_{X/A}$$

in $D(X, \mathcal{O}_X)$. The de Rham comparison theorem (dR) thus provides a multiplicative isomorphism (in D(X, W(k)))

$$\varphi_A^* \Omega_{X/W(k)}^{\not D} \stackrel{\sim}{\to} \varphi_* \Omega_{X/W(k)}^{\bullet},$$

which, by reduction mod p yields the desired isomorphism (in $D(Y', \mathcal{O}_{Y'})$)

(0.2)
$$\varepsilon: \varphi^* \Omega_{Y/k}^{\mathcal{D}} \xrightarrow{\sim} F_* \Omega_{Y/k}^{\bullet}.$$

Remarks on the mod p^2 lifted case

A formal smooth lifting X of Y over $\mathrm{Spf}(W_2(k))$ instead of over $\mathrm{Spf}(W(k))$ gives rise to a similar story and yields the general case of Th. 1. Note, however, that

$$\operatorname{WCart}^{\operatorname{HT}}_{\operatorname{Spf}(W_n(k))} \not\xrightarrow{\gamma} (B\mathbf{G}_m^{\sharp})_{\operatorname{Spf}(W_n(k))}.$$

(e. g.,
$$WCart_{Spec(k)}^{HT} = Spec(k)$$
). For all $n \ge 1$,

$$\operatorname{WCart}^{\operatorname{HT}}_{\operatorname{Spf}(W_n(k))} = [\operatorname{Spf}(W_n(k))^{\not D}/\mathsf{G}_m^{\sharp}],$$

where $\operatorname{Spf}(W_n(k))^{\not D}$ is the diffracted Hodge stack of $\operatorname{Spf}(W_n(k))$, defined by the fiber square

$$\operatorname{Spf}(W_n(k))^{\not D} \longrightarrow \operatorname{WCart}^{\operatorname{HT}}_{\operatorname{Spf}(W_n(k))} \\ \downarrow \qquad \qquad \downarrow \\ \operatorname{Spf}(W(k)) \stackrel{\eta}{\longrightarrow} \operatorname{WCart}^{\operatorname{HT}}_{\operatorname{Spf}(W(k))}.$$

In particular [BL1, 5.15], for $n \ge 2$,

$$\operatorname{WCart}^{\operatorname{HT}}_{\operatorname{Spec}(W_n(k))} \times_{\operatorname{Spf}(W_n(k))} \operatorname{Spec}(k) \overset{\sim}{\to} [\mathsf{G}_a^{\sharp}/\mathsf{G}_m^{\sharp}]_{\operatorname{Spec}(k)}.$$

Therefore the composite

$$\operatorname{Spec}(k) o \operatorname{Spf}(W(k)) \stackrel{\eta}{ o} (B\mathbf{G}_m^{\sharp})_{\operatorname{Spf}(W(k))}$$

factors through a unique map

$$\eta_2: \operatorname{Spec}(k) \to \operatorname{WCart}^{\operatorname{HT}}_{\operatorname{Spec}(W_2(k))} \times_{\operatorname{Spec}(W_2(k))} \operatorname{Spec}(k) = [\mathsf{G}_a^{\sharp}/\mathsf{G}_m^{\sharp}]_{\operatorname{Spec}(k)}$$

a section of $[\mathbf{G}_a^{\sharp}/\mathbf{G}_m^{\sharp}]_{\operatorname{Spec}(k)}$, whose automorphism group is $(\mathbf{G}_m^{\sharp})_{\operatorname{Spec}(k)}$.

This suffices to carry over the arguments to the mod p^2 case.

6. An alternate approach: endomorphisms of the de Rham functor (after Li-Mondal, Mondal)

Let Y/k be smooth. The construction of a Sen structure on $F_*\Omega^{\bullet}_{Y/k}$ provided by a formal smooth $X/W_2(k)$ lifting Y uses the deus ex machina WCart. One can ask:

- (1) Can one understand this hidden structure more concretely?
- (2) Can one bypass WCart to construct it?

While (1) remains largely open, Li-Mondal [LM] have recently given an independent proof of Th. 1, which doesn't use prismatization, but instead, a certain ring stack $\mathbf{G}_a^{\mathrm{dR}}$ over W(k), the de Rham stack (an avatar of WCart), which generates the de Rham cohomology functor.

It was subsequently shown by Mondal [M] that this stack is not a deus ex machina, but, in fact, can be reconstructed from the de Rham cohomology functor.

de Rham cohomology functor

(Drinfeld, Li-Mondal, Bhatt) $\uparrow \downarrow$ (Mondal)

The de Rham stack $\mathbf{G}_a^{\mathrm{dR}}$

↓ (Li-Mondal)

Endomorphisms of the de Rham functor

Theorem 1

The de Rham stack

The de Rham stack is the ring stack over Spf(W(k))

$$\mathsf{G}_{a}^{\mathrm{dR}}:=\left[\mathsf{G}_{a}/\mathsf{G}_{a}^{\sharp}
ight]$$

where $\mathbf{G}_a^{\sharp} = W[F] = \operatorname{Spec}(W(k)\langle t \rangle)$ is viewed as a quasi-ideal in \mathbf{G}_a via the canonical map

$$\mathsf{G}_a^\sharp \to \mathsf{G}_a$$

induced by the projection $W \to \mathbf{G}_a$, $x \mapsto x_0$, corresponding to $W[t] \to W\langle t \rangle$. ⁷ Points of $\mathbf{G}_a^{\mathrm{dR}}$ with value in a p-complete W(k)-algebra R are the groupoid underlying the animated W(k)-algebra

$$\mathsf{G}_{\mathsf{a}}^{\mathrm{dR}}(R) = (\mathsf{G}_{\mathsf{a}}^\sharp(R) o \mathsf{G}_{\mathsf{a}}(R)).$$

⁷(an analogue of the Simpson stack $[\mathbf{G}_a/\widehat{\mathbf{G}}_a]$ in characteristic zero)

Relations with WCart and de Rham cohomology

Reconstruction of de Rham cohomology

(Bhatt) For $X/\mathrm{Spf}(W(k))$ formal smooth, define the de Rham stack of X

$$X^{\mathrm{dR}}$$

by $X^{\mathrm{dR}}(R) = X(\mathbf{G}_a^{\mathrm{dR}}(R))$ on *p*-complete W(k)-algebras R, i.e., for $X = \mathrm{Spf}(A)$, $X^{\mathrm{dR}}(R) = \mathrm{Hom}(A, \mathbf{G}_a^{\mathrm{dR}}(R))$, Hom taken in the category of animated W(k)-algebras.

Theorem 6 (Bhatt, Li-Mondal)⁸ There is a functorial isomorphism

$$R\Gamma_{dR}(X/W(k)) = R\Gamma(X^{dR}, \mathcal{O})$$

The definition of X^{dR} is a special case of Li-Mondal's theory of unwinding [LM].

⁸(elaborating on a theorem of Drinfeld [Dr0,Th. 2.4.2])

- Relation with WCart and the de Rham point
- (a) (Drinfeld) $\mathbf{G}_{a}^{\mathrm{dR}} \stackrel{\sim}{\to} [W \stackrel{p}{\to} W]$
- (b) Consider the de Rham point

$$\rho_{\mathrm{dR}} = \rho_{(\mathbf{Z}_p,(p))} : \mathrm{Spf}(\mathbf{Z}_p) \to \mathrm{WCart}$$

(corresponding to
$$p = (p, 1 - p^{-1}, \cdots) \in WCart_0(\mathbf{Z}_p)$$
).

By Drinfeld's formula above $\rho_{\rm dR}$ "generates" the de Rham stack, and, thanks to the prismatic de Rham comparison theorem yields, by pull-back, another proof of Th. 6 [BL, Prop. 5.4.8].

Endomorphisms of the de Rham functor

By unwinding and using that $\mathbf{G}_a^{\mathrm{dR}}$ is an affine stack in the sense of Toën [T] Li-Mondal [LM] show that $\mathbf{G}_a^{\mathrm{dR}}$ controls the endomorphisms of the de Rham functor. In particular, they prove:

Theorem 7 [LM, Th. 4.23] For a k-algebra B, let $\mathrm{CAlg}(D(B))$ denote the category of commutative algebra objects in the $(\infty$ -) category D(B). Consider the group functor on the category of k-algebras defined by

$$F: B \mapsto \operatorname{Aut}(\widetilde{R} \mapsto \Omega^{\bullet}_{\widetilde{R} \otimes_{W_2(k)} k/k} \otimes_k B \in \operatorname{CAlg}(D(B))),$$

where \widetilde{R} runs through the smooth $W_2(k)$ -algebras. Then F is represented by $\mathbf{G}_{m,k}^{\sharp}$.

Applying Th. 7 for the Hopf algebra $B = \Gamma(\mathbf{G}_{m,k}^{\sharp}, \mathcal{O})$, Li-Mondal deduce the (functorial in \widetilde{R}) action of $\mathbf{G}_{m,k}^{\sharp}$ on $\Omega_{\widetilde{R}\otimes k/k}^{\bullet}$, and, finally, the Sen structure given in Th. 1.

As a bonus, they prove:

Corollary (1) There is a unique splitting

$$\mathcal{O}_{\widetilde{X}'_k} \oplus \Omega^1_{\widetilde{X}'_k}[-1] \overset{\sim}{\to} \tau^{\leqslant 1} F_* \Omega^{\bullet}_{\widetilde{X}_k/k},$$

inducing C^{-1} on H^i , and functorial in the smooth scheme $\widetilde{X}/W_2(k)$. In particular, the splittings constructed by Drinfeld, Bhatt-Lurie and Li-Mondal coincide.

(2) There is no functorial splitting $F_*\Omega_{\widetilde{X}_k/k}^{\bullet} \stackrel{\sim}{\to} \oplus_i H^i(F_*\Omega_{\widetilde{X}_k/k}^{\bullet})[-i]$ as functors to $\mathrm{CAlg}(D(k))$ from smooth schemes \widetilde{X} over $W_2(k)$. Remark. Part (2) was proved independently by Mathew.

Reconstruction of the de Rham stack from de Rham cohomology

The functor $R \mapsto \Omega_{R/k}^{\bullet}$ from the category of smooth k-algebras to $\mathrm{CAlg}(D(k))$ extends by left Kan extension to a functor

$$\mathrm{dR}: \mathrm{ARings}_k \to \mathrm{CAlg}(D(k)), \ R \mapsto L\Omega_{R/k}^{\bullet},$$

where $ARings_k$ is the category of animated k-algebras. As dR commutes with colimits, dR has a right adjoint

$$\mathrm{dR}^{\vee}:\mathrm{CAlg}(D(k))\to\mathrm{ARing}_k.$$

Let $\mathrm{Alg}_k \subset \mathrm{ARings}_k$ be the full subcategory of usual commutative k-algebras, and

$$dR_0^{\vee}: Alg_k \to ARing_k$$

be the restriction of dR^{\vee} along $Alg_k \subset ARings_k \to CAlg(D(k))$.

Theorem 8. (Mondal). There is a canonical isomorphism

$$\mathrm{dR}_0^\vee \stackrel{\sim}{\to} (\mathbf{G}_a^{\mathrm{dR}})_k.$$

7. Questions

This theory of diffraction and Sen complexes forms a new territory, which has not yet been much explored. Here are a few questions.

Question 1. Is there a smooth Y/k, liftable to $W_2(k)$, such that

$$(*) F_*\Omega^{\bullet}_{Y/k} \not\xrightarrow{\sim} \oplus_i H^i(F_*\Omega^{\bullet}_{Y/k})[-i]$$

in $D(Y', \mathcal{O}_{Y'})$?

Question already raised in [DI]. A counterexample should have dimension $\geqslant p+1$. By Cor. (2) to Th. 7, there is no splitting (*) of $F_*\Omega^{\bullet}_{Y/k}$, for $Y=\widetilde{Y}\otimes k$, which is *multiplicative* (i.e., with values in $\mathrm{CAlg}(D(k))$) and *functorial* in the lifting $\widetilde{Y}/W_2(k)$.

Questions 2. Let Y/k be smooth, having a lifting Y to $W_2(k)$, so that by Th. 1 we have a Sen structure $(\Omega_{Y/k}^{\not D}, \Theta, \varepsilon)$ on $F_*\Omega_{Y/k}^{\bullet}$.

- (a) Does there exist a pair (Y, \widetilde{Y}) such that, for each $i \in \mathbf{Z}/p\mathbf{Z}$, $\Theta_i \in \mathrm{End}((F_*\Omega^{\bullet}_{Y/k})_i)$ is non-zero?
- (Petrov [P] constructed an example with $\Theta_0|\tau^{\leqslant p}(F_*\Omega^{\bullet}_{Y/k})_0$ not 0.)
- (b) ([BL, 4.7.20]) Is there a bound, independent of $\dim(Y)$ for the orders of nilpotency of the Θ_i 's?
- (c) The isomorphism classes of lifts \widetilde{Y} form an affine space A under $\operatorname{Ext}^1(\Omega^1_{Y'/k},\mathcal{O}_{Y'})$. For each $x\in A$, $\Theta_0(x)$, restricted to $\tau^{\leqslant p}(F_*\Omega^{\bullet}_{Y'/k})_0$ is an element $c(x)\in\operatorname{Ext}^p(\Omega^p_{Y'/k},\mathcal{O}_{Y'})$. Can one explicitly describe the map

$$c: A \to \operatorname{Ext}^p(\Omega^p_{Y'/k}, \mathcal{O}_{Y'})$$
?

Question 3. Generalize Sen structures to families, i.e., replace $W_2(k)$ by a parameter space T over $W_2(k)$.

Question 4. (Bhatt) Is there an analogue of the Sen story over other prisms than (W(k),(p))? Suppose (A,I) is an absolute (bounded) prism, and $X \to \operatorname{Spf}(A/I)$ formal smooth is lifted to \widetilde{X} formal smooth over $\operatorname{Spf}(A)$ (or just $\operatorname{Spf}(A/I^2)$), does the datum of \widetilde{X} gives extra structure on $\overline{\mathbb{A}}_{X/A} \in D(X,\mathcal{O}_X)$?

Finally, let me mention 3 problems on which there is ongoing work:

(a) Behavior of Θ with respect to the (decreasing) Hodge filtration of $\Omega^{\not D}_{Y/k}$ and analogy of $\Theta^p - \Theta$ with a *p*-curvature. Link with Drinfeld's Σ' [Dr, section 5] and the extended Hodge-Tate stack

$$[\mathsf{G}_{a}^{\mathrm{dR}}/\mathsf{G}_{m}]$$

of which $B\mathbf{G}_m^{\sharp}$ is an open substack. Ongoing work by Bhatt-Lurie [BL 4.7.23].

- (b) Problem of reconstructing of WCart from prismatic cohomology: generalization of Th. 8 (reconstruction of $\mathbf{G}_a^{\mathrm{dR}}$ from de Rham cohomology). Ongoing work by Mondal.
- (c) Derived and log variants. Ongoing work by (Mathew-Yao, Mondal).

⁹(deduced from the naive filtration of $F_*\Omega^{\bullet}_{Y/k}$ by the isomorphism $\Omega^{\not D}_{Y/k} \stackrel{\sim}{\to} F_*\Omega^{\bullet}_{Y/k}$)

References

- [BL] Bhatt, Bhargav, Lurie, Jacob. *Absolute Prismatic Cohomology*, arXiv:2201.06120v1, 2022.
- [BL1] Bhatt, Bhargav, Lurie, Jacob. *The prismatization of p-adic formal schemes*, arXiv:2201.06124v1, 2022.
- [BS] Bhatt, Bhargav; Scholze, Peter. *Prisms and Prismatic Cohomology*, preprint, 2019, arXiv:1905.08229v2.
- [DI] Deligne, Pierre; Illusie, Luc. Relèvements modulo p^2 et décomposition du complexe de de Rham. Invent. Math. 89 (1987), no. 2, 247–270.
- [Dr0] Drinfeld, Vladimir. *A stacky approach to crystals*. arXiv:1810.11853v1, 28 Oct. 2018.
- [Dr] Drinfeld, Vladimir. *Prismatization*. arXiv:2005.04746v3, 1 Aug. 2021.

- [F] Faltings, Gerd. *F-isocrystals on open varieties*, The Grothendieck Festschrift, vol. II, P. Cartier, L. Illusie, N. M. Katz, G. Laumon, Y. Manin, K.A. Ribet eds., 219-248, Birkhäuser Boston, 1990.
- [LM] Li, Shizhang; Mondal, Shubhodip. *On endomorphisms of the de Rham cohomology functor.* arXiv:2109.04303v1, 2021.
- [OI] Olsson, Martin. *Logarithmic geometry and algebraic stacks*, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 5, 747–791.
- [P] Petrov, Alexander. work in preparation.
- [T] Toën, Bertrand. *Champs affines*, Selecta Math. (N. S.) 12 (2006), 39-135.